Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721817

RESUMEN

Cohesive and interfacial adhesion energies are difficult to balance to obtain reversible adhesives with both high mechanical strength and high adhesion strength, although various methods have been extensively investigated. Here, a biocompatible citric acid/L-(-)-carnitine (CAC)-based ionic liquid was developed as a solvent to prepare tough and high adhesion strength ionogels for reversible engineered and biological adhesives. The prepared ionogels exhibited good mechanical properties, including tensile strength (14.4 MPa), Young's modulus (48.1 MPa), toughness (115.2 MJ m-3), and high adhesion strength on the glass substrate (24.4 MPa). Furthermore, the ionogels can form mechanically matched tough adhesion at the interface of wet biological tissues (interfacial toughness about 191 J m-2) and can be detached by saline solution on demand, thus extending potential applications in various clinical scenarios such as wound adhesion and nondestructive transfer of organs.

2.
Adv Sci (Weinh) ; : e2309590, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647392

RESUMEN

The escalating spread of drug-resistant bacteria and viruses is a grave concern for global health. Nucleic acids dominate the drug-resistance and transmission of pathogenic microbes. Here, imidazolium-type poly(ionic liquid)/porphyrin (PIL-P) based electrospun nanofibrous membrane and its cerium (IV) ion complex (PIL-P-Ce) are developed. The obtained PIL-P-Ce membrane exhibits high and stable efficiency in eradicating various microorganisms (bacteria, fungi, and viruses) and decomposing microbial antibiotic resistance genes and viral nucleic acids under light. The nuclease-mimetic and photocatalytic mechanisms of the PIL-P-Ce are elucidated. Co-infection wound models in mice with methicillin-resistant S. aureus and hepatitis B virus demonstrate that PIL-P-Ce integrate the triple effects of cationic polymer, photocatalysis, and nuclease-mimetic activities. As revealed by proteomic analysis, PIL-P-Ce shows minimal phototoxicity to normal tissues. Hence, PIL-P-Ce has potential as a "green" wound dressing to curb the spread of drug-resistant bacteria and viruses in clinical settings.

3.
Adv Mater ; 36(15): e2307585, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307004

RESUMEN

Hypoxia and infection are urgent clinical problems in chronic diabetic wounds. Herein, living Chlorella-loaded poly(ionic liquid)-based microneedles (PILMN-Chl) are constructed for microacupuncture oxygen and antibacterial therapy against methicillin-resistant Staphylococcus aureus (MRSA)-infected chronic diabetic wounds. The PILMN-Chl can stably and continuously produce oxygen for more than 30 h due to the photosynthesis of the loaded self-supported Chlorella. By combining the barrier penetration capabilities of microneedles, the continuous and sufficient oxygen supply of Chlorella, and the sterilization activities of PIL, the PILMN-Chl can accelerate chronic diabetic wounds in vivo by topical targeted sterilization and hypoxia relief in deep parts of wounds. Thus, the self-oxygen produced microneedles modality may provide a promising and facile therapeutic strategy for treating chronic, hypoxic, and infected diabetic wounds.


Asunto(s)
Chlorella , Diabetes Mellitus , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Oxígeno , Hipoxia/terapia
4.
ACS Appl Mater Interfaces ; 16(7): 8459-8473, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38327180

RESUMEN

Metal-organic frameworks (MOFs) are emerging porous materials that can serve as carriers of photosensitizers and photothermal agents. Meanwhile, a large number of active sites in MOFs endow them with the characteristics of modification by postsynthetic modification. Herein, a dual-modal PDT/PTT therapeutic agent HMIL-121-acriflavine-tetrakis (4-amoniophenyl) porphyrin (HMIL-ACF-Por), prepared by the postsynthetic modification of the MOF (HMIL-121), was reported for antibacterial applications. The prepared HMIL-ACF-Por enables the generation of abundant reactive oxygen species, including the superoxide anion radical (O2-) and singlet oxygen (1O2), and thermal energy under 808 nm NIR laser irradiation. HMIL-ACF-Por showed good antibacterial ability against Escherichia coli and Staphylococcus aureus in vitro. Meanwhile, HMIL-ACF-Por can effectively inhibit the inflammatory response caused by bacterial infection and accelerate S. aureus-infected wound healing under laser irradiation owing to the synergistic effect of photodynamic therapy (PDT) and photothermal therapy (PTT). These results demonstrate that HMIL-ACF-Por is a promising PDT/PTT therapeutic agent. This work also contributes to offering an effective solution for treating bacterial infections and promotes the application of MOF-based materials in biomedicine.


Asunto(s)
Estructuras Metalorgánicas , Fotoquimioterapia , Fotoquimioterapia/métodos , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/química , Staphylococcus aureus , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno , Superóxidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
5.
Biomacromolecules ; 25(1): 89-103, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38056946

RESUMEN

Antimicrobial peptide mimics have been used to kill bacteria and construct antibacterial materials. Precise design and construction of chemical structure are essential for easy access to highly effective antimicrobial peptide mimics. Herein, cationic guanidinium-based polymers (PGXs) with varying hydrophobic structures were synthesized to explore the structure and antibacterial activity relationship of antimicrobial peptide mimics and to construct antibacterial implants. The effect of the hydrophobic chemical structure, including carbon chain length and configuration, on the antimicrobial activities against both Escherichia coli and Staphylococcus aureus was investigated. The antibacterial activities of PGXs improved with increasing alkyl chain length, and PGXs with a straight-chain hydrophobic structure exhibited better bactericidal activities than those with cyclic alkane and aromatic hydrocarbon. Furthermore, PGXs grafted with poly(dimethylsiloxane) (PDMS-PGXs) showed a similar bactericidal change tendency of PGXs in solution. Additionally, the PDMS-PGXs showed potent antibiofilm performance in vitro, which can inhibit bacterial infection in vivo as subcutaneous implants. This study may propose a basis for the precise design and construction of antibacterial materials and provide a promising way of designing biomedical devices and implants with bacterial infection-combating activities.


Asunto(s)
Polímeros , Infecciones Estafilocócicas , Humanos , Polímeros/farmacología , Polímeros/química , Guanidina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Antimicrobianos , Escherichia coli , Pruebas de Sensibilidad Microbiana
6.
Acta Biomater ; 166: 254-265, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37187300

RESUMEN

Oral aphthous ulcers are a common inflammatory efflorescence of oral mucosa, presenting as inflammation and oral mucosal damage and manifesting as pain. The moist and highly dynamic environment of the oral cavity makes the local treatment of oral aphthous ulcers challenging. Herein, a poly(ionic liquid)-based diclofenac sodium (DS)-loaded (PIL-DS) buccal tissue adhesive patch fabricated with intrinsically antimicrobial, highly wet environment adhesive properties and anti-inflammatory activities to treat oral aphthous ulcers was developed. The PIL-DS patch was prepared via polymerization of a catechol-containing ionic liquid, acrylic acid, and butyl acrylate, followed by anion exchange with DS-. The PIL-DS can adhere to wet tissues, including mucosa muscles and organs, and efficiently deliver the carried DS- at wound sites, exerting remarkable synergistic antimicrobial (bacteria and fungi) properties. Accordingly, the PIL-DS elicited dual therapeutic effects on oral aphthous ulcers with Staphylococcus aureus infection through antibacterial and anti-inflammatory activities, significantly accelerating oral aphthous ulcer healing as an oral mucosa patch. The results indicated that the PIL-DS patch, with inherently antimicrobial and wet adhesion properties, is promising for treating oral aphthous ulcers in clinical practice. STATEMENT OF SIGNIFICANCE: Oral aphthous ulcers are a common oral mucosal disease, which could lead to bacterial infection and inflammation in severe cases, especially for people with large ulcers or low immunity. However, moist oral mucosa and highly dynamic oral environment make it challenging to maintain therapeutic agents and physical barriers at the wound surface. Therefore, an innovative drug carrier with wet adhesion is urgently needed. Herein, a poly(ionic liquid)-based diclofenac sodium (DS)-loaded (PIL-DS) buccal tissue adhesive patch was developed to treat oral aphthous ulcers showing intrinsically antimicrobial and highly wet environment adhesive properties due to the presence of catechol-containing ionic liquid monomer. Additionally, the PIL-DS showed significantly therapeutic effects on oral aphthous ulcers with S. aureus infection through antibacterial and anti-inflammatory activities. We expect that our work can provide inspiration for the development of treatment for microbially infected oral ulcers.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Líquidos Iónicos , Úlceras Bucales , Estomatitis Aftosa , Adhesivos Tisulares , Humanos , Úlceras Bucales/tratamiento farmacológico , Estomatitis Aftosa/tratamiento farmacológico , Adhesivos , Adhesivos Tisulares/uso terapéutico , Staphylococcus aureus , Diclofenaco , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Inflamación/tratamiento farmacológico
7.
Biomater Sci ; 11(9): 3114-3127, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36917099

RESUMEN

Poor permeation of therapeutic agents and similar eukaryotic cell metabolic and physiological properties of fungi and human cells are two major challenges that lead to the failure of current therapy for fungi-induced skin and soft tissue infections. Herein, a nitric oxide (NO)-releasing poly(ionic liquid)-based microneedle (PILMN-NO) with the capacity of deep persistent NO toward subcutaneous fungal bed is presented as a synergistic antifungal treatment strategy to treat subcutaneous fungal infection. Upon the insertion of PILMN-NO into skin, the contact fungicidal activities induced by electrostatic and hydrophobic effects of poly(ionic liquid) and the released NO sterilization resulting from the peroxidation and nitrification effect of NO achieved enhanced antifungal efficacy against fungi (Candida albicans) both in vitro and in vivo. Simultaneously, PILMN-NO showed biofilm ablation ability and efficiently eliminated mature biofilms. In vivo fungal-induced subcutaneous abscess studies revealed that PILMN-NO could effectively sterilize fungi while suppressing the inflammatory reaction, facilitating collagen deposition and angiogenesis, and promoting wound healing. This work provides a new strategy to overcome the difficulties in deep skin fungal infection treatment and has potential for further exploitation of NO-releasing microbicidal therapy.


Asunto(s)
Líquidos Iónicos , Micosis , Humanos , Antifúngicos/farmacología , Óxido Nítrico , Líquidos Iónicos/farmacología , Micosis/tratamiento farmacológico , Candida albicans/fisiología , Biopelículas
8.
Chem Commun (Camb) ; 59(17): 2429-2432, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36753051

RESUMEN

Herein we develop a facile, one-step electrochemical approach for the in situ construction of a Co/CoP crystalline-amorphous hetero-phase catalyst towards the hydrogen evolution reaction (HER). The unique catalyst demonstrates a low overpotential of 83 mV at 10 mA cm-2 with a small Tafel slope of 55.3 mV dec-1 in 1.0 M KOH. The Co/CoP crystalline-amorphous hetero-phase is highly conducive to regulating the Co-P electronic structure and weakening the H atom adsorption, thus markedly boosting the HER performance. This work offers an innovative strategy to develop a highly efficient transition metal phosphide electrocatalyst with a novel structure.

9.
Biomater Sci ; 10(22): 6460-6471, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36155673

RESUMEN

Bacterial nanotubes are tubular membranous structures bulging from the cell surface that can connect neighboring bacteria for the exchange of intercellular substances. However, little is known about the formation and function of bacterial nanotubes under the stress of antimicrobial materials. Herein, an imidazolium-type cationic poly(ionic liquid) (PIL) and corresponding PIL membranes with antimicrobial properties were synthesized. The effects of these cationic polymers on the formation of bacterial nanotubes between Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) or Vibrio fischeri (V. fischeri), followed by intraspecies and interspecies exchange of antibiotic resistance genes (ARGs) were investigated. The results showed that bacteria tend to produce more nanotubes accompanied by drug-resistance trade, which can even make the ARGs of pathogens spread to the environmental microbes of V. fischeri. Given the unique antimicrobial sustainability toward bacteria after they acquire ARGs via bacterial nanotubes, antimicrobial PILs demonstrate bright prospects in the battle against resistant bacteria.


Asunto(s)
Antiinfecciosos , Líquidos Iónicos , Nanotubos , Líquidos Iónicos/farmacología , Líquidos Iónicos/química , Staphylococcus aureus , Escherichia coli/genética , Antibacterianos/química , Antiinfecciosos/farmacología , Bacterias , Cationes/farmacología
10.
Chem Sci ; 13(23): 6967-6981, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35774158

RESUMEN

Pandemic and epidemic spread of antibiotic-resistant bacterial infections would result in a huge number of fatalities globally. To combat antibiotic-resistant pathogens, new antimicrobial strategies should be explored and developed to confront bacteria without acquiring or increasing drug-resistance. Here, oxygen saturated perfluorohexane (PFH)-loaded mesoporous carbon nanoparticles (CIL@ICG/PFH@O2) with photothermal therapy (PTT) and enhanced photodynamic therapy (PDT) utility are developed for antibacterial applications. Ionic liquid groups are grafted onto the surface of mesoporous carbon nanoparticles, followed by anion-exchange with the anionic photosensitizer indocyanine green (ICG) and loading oxygen saturated PFH to prepare CIL@ICG/PFH@O2. These CIL@ICG/PFH@O2 nanoparticles exhibit effective PTT and enhanced PDT properties simultaneously upon 808 nm light irradiation. In vitro assays demonstrate that CIL@ICG/PFH@O2 shows a synergistic antibacterial action against antibiotic-resistant pathogens (methicillin-resistant Staphylococcus aureus and kanamycin-resistant Escherichia coli). Moreover, CIL@ICG/PFH@O2 could effectively kill drug-resistant bacteria in vivo to relieve inflammation and eliminate methicillin-resistant Staphylococcus aureus-wound infection under NIR irradiation, and the released oxygen can increase collagen deposition, epithelial tissue formation and blood vessel formation to promote wound healing while enhancing the PDT effect. This study proposes a platform with enhanced PTT/PDT effects for effective, controlled, and precise treatment of topical drug-resistant bacterial infections.

11.
Biomacromolecules ; 23(6): 2329-2341, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35652936

RESUMEN

Infections caused by bacteria and biofilms on the surfaces of biomedical devices and implants pose serious threats to public health. Herein, a nitric oxide (NO) gas-releasing quaternary ammonium-type ionic liquid (IL)-based coating on polydimethylsiloxane (PDMS), PDIL-NO, with effective and long-acting antibacterial and antifouling properties was prepared. N-(2-((2, 3-Dimethylbut-3-enoyl)oxy)ethyl)-N, N-dimethyloctan-1-aminium bromide (IL-Br), and 2-methyl-2-propenoic acid 2-(2-methoxyethoxy) ethyl ester were covalently grafted onto the surfaces of PDMS by a thiol-ene click chemical reaction, followed by incorporation of l-proline anions (Pro-) through anion exchange with Br- to adsorb NO gas. The prepared PDIL-NO showed a prolonged NO-releasing time (>1440 min) and a relatively high concentration (88 µM). Additionally, PDIL-NO possessed good and long-term antimicrobial activity, and could effectively reduce the adsorption of bovine serum albumin and adhesion of bacteria, as well as inhibit wound infection and reduce inflammation in vivo due to the synergetic effect of IL and the released NO. This study may provide a new approach to combat bacterial infections associated with biomedical devices and implants.


Asunto(s)
Incrustaciones Biológicas , Líquidos Iónicos , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Incrustaciones Biológicas/prevención & control , Líquidos Iónicos/farmacología , Óxido Nítrico/química , Elastómeros de Silicona/química
12.
Adv Mater ; 34(28): e2203049, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35522456

RESUMEN

Most gels and elastomers introduce sacrificial bonds in the covalent network to dissipate energy. However, long-term cyclic loading caused irreversible fatigue damage and crack propagation cannot be prevented. Furthermore, because of the irreversible covalent crosslinked networks, it is a huge challenge to implement reversible mechanical interlocking and reorganize the polymer segments to realize the recycling and reuse of ionogels. Here, covalent crosslinking of host materials is replaced with entanglement. The entangled microdomains are used as physical crosslinking while introducing reversible bond interactions. The interpenetrating, entangled, and elastic microdomains of linear segments and covalent-network microspheres provide mechanical stability, eliminate stress concentration at the crack tip under load, and achieve unprecedented tear and fatigue resistance of ionogels in any load direction. Moreover, reversible entanglements and noncovalent interactions can be disentangled and recombined to achieve recycling and mechanical regeneration, and the recyclability of covalent-network microdomains is realized.

13.
Acta Biomater ; 146: 370-384, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35381397

RESUMEN

As a metal-free polymeric photocatalyst, graphitic carbon nitride (g-C3N4) has attracted great attention owing to its high stability and low toxicity. However, g-C3N4 suffers from low light harvesting ability which limits its applications in antimicrobial photocatalytic therapy (APCT). Herein, acridinium (ADN)-grafted g-C3N4 (ADN@g-C3N4) nanosheets are prepared via covalent grafting of ADN to g-C3N4. The obtained ADN@g-C3N4 exhibits a narrow optical band gap (2.12 eV) and a wide optical absorption spectrum (intensity a.u. > 0.30) ranging from ultraviolet to near-infrared region. Moreover, ADN@g-C3N4 would produce reactive oxygen species (ROS) under light irradiation to exert effective sterilization and biofilm elimination activities against both gram-negative and gram-positive bacteria. Molecular dynamics simulation reveals that the ADN@g-C3N4 may move toward, tile and insert the bacterial lipid bilayer membrane through strong van der Waals and electrostatic interaction, decreasing the order parameter of the lipid while increasing the conducive of ROS migration, inducing ADN@g-C3N4 with improved antimicrobial and antibiofilm performance. Moreover, ADN@g-C3N4 could efficiently eradicate oral biofilm on artificial teeth surfaces. This work may provide a broad-spectrum light-induced photocatalytic therapy for preventing and treating dental plaque diseases and artificial teeth-related infections, showing potential applications for intractable biofilm treatment applications. An acridinium-grafted g-C3N4 (ADN@g-C3N4) with a narrow band gap and broad-spectrum light absorption was synthesized. The narrow optical band gap and improved electrostatic interaction with bacterial lipid bilayer membrane of ADN@g-C3N4 strengthened the ROS generation and facilitated the diffusion of ROS to bacteria surface, leading to enhanced photocatalytic and antibacterial activity against bacteria and corresponding biofilm under light irradiation. STATEMENT OF SIGNIFICANCE: An acridinium-grafted g-C3N4 (ADN@g-C3N4) with a narrow band gap and broad-spectrum light absorption was developed as an antimicrobial photocatalytic therapy agent. The ADN@g-C3N4 exhibited enhanced photocatalytic and antibacterial activity against bacteria and corresponding biofilm under light irradiation, showing potential applications for intractable biofilm treatment.


Asunto(s)
Antiinfecciosos , Membrana Dobles de Lípidos , Antibacterianos/farmacología , Bacterias , Luz , Nitrilos , Especies Reactivas de Oxígeno
14.
Adv Mater ; 34(4): e2106570, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34751468

RESUMEN

Electronic skin can detect minute electrical potential changes in the human skin and represent the body's state, which is critical for medical diagnostics and human-computer interface development. On the other hand, sweat has a significant effect on the signal stability, comfort, and safety of electronic skin in a real-world application. In this study, by modifying the cation and anion of a poly(ionic liquid) (PIL) and employing a spinning process, a PIL-based multilayer nanofiber membrane (PIL membrane) electronic skin with a dual gradient is created. The PIL electronic skin is moisture-wicking and breathable due to the hydrophilicity and pore size-gradients. The intrinsically antimicrobial activities of PILs allow the safe collection of bioelectrical signals from the human body, such as electrocardiography (ECG) and electromyography (EMG). In addition, a robotic hand may be operated in real-time, and a preliminary human-computer interface can be accomplished by simple processing of the collected EMG signal. This study establishes a novel practical approach for monitoring and using bioelectrical signals in real-world circumstances via the multifunctional electronic skin.


Asunto(s)
Líquidos Iónicos , Nanofibras , Dispositivos Electrónicos Vestibles , Antibacterianos/farmacología , Acción Capilar , Humanos
15.
J Am Chem Soc ; 143(38): 15891-15897, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34520192

RESUMEN

Tuning the crystal phase of bimetallic nanocrystals offers an alternative avenue to improving their electrocatalytic performance. Herein, we present a facile and one-pot synthesis approach that is used to enhance the catalytic activity and stability toward oxygen reduction reaction (ORR) in alkaline media via control of the crystal structure of Pd-Bi nanocrystals. By merely altering the types of Pd precursors under the same conditions, the monoclinic structured Pd5Bi2 and conventional face-centered cubic (fcc) structured Pd3Bi nanocrystals with comparable size and morphology can be precisely synthesized, respectively. Interestingly, the carbon-supported monoclinic Pd5Bi2 nanocrystals exhibit superior ORR activity in alkaline media, delivering a mass activity (MA) as high as 2.05 A/mgPd. After 10,000 cycles of ORR durability test, the monoclinic structured Pd5Bi2/C nanocatalysts still remain a MA of 1.52 A/mgPd, which is 3.6 times, 16.9 times, and 21.7 times as high as those of the fcc Pd3Bi/C counterpart, commercial Pd/C, and Pt/C electrocatalysts, respectively. Moreover, structural characterizations of the monoclinic Pd5Bi2/C nanocrystals after the durability test demonstrate the excellent retention of the original size, morphology, composition, and crystal phase, greatly alleviating the leaching of the Bi component. This work provides new insight for the synthesis of multimetallic catalysts with a metastable phase and demonstrates phase-dependent catalytic performance.

16.
Adv Healthc Mater ; 10(19): e2100775, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34165250

RESUMEN

Antibiotic resistance is considered as one of the serious public health issues. Antibacterial photocatalytic therapy, a clinically proven antibacterial therapy, is gaining increasing attention in recent years owing to its high efficacy. Here, an acridine-based covalent organic framework (COF) photosensitizer, named TPDA, with multiple active sites is synthesized via Schiff base condensation between 2,4,6-triformylphloroglucinol (TFP) and 3,6-diaminoacridine (DAA). Owing to the increased conjugation effect of the COF skeleton and outstanding light harvesting ability of DAA, TPDA exhibits a narrow optical band gap (1.6 eV), enhancing light energy transformation and conferring a wide optical absorption spectrum (intensity arbitrary unit > 0.8) ranging from the UV to near-infrared region. Moreover, TPDA shows high antibacterial activities against both gram-negative and gram-positive bacteria within a short time (10 min) of light irradiation and is found to efficiently protect fish from skin infections. Molecular dynamics simulation data show that the introduction of DAA and TFP facilitates the interaction between TPDA and bacteria and is conducive to reactive oxygen species migration, which further improves the antimicrobial performance. These findings indicate the potential of TPDA as a novel photosensitive material for photodynamic therapy.


Asunto(s)
Estructuras Metalorgánicas , Fármacos Fotosensibilizantes , Acridinas , Animales , Antibacterianos/farmacología , Fármacos Fotosensibilizantes/farmacología
17.
Chemosphere ; 282: 130866, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34089998

RESUMEN

The direct Z-scheme heterojunction structure benefits separation and migration of photoinduced carriers while maintaining original redox ability of each component. Nowadays, most Z-scheme structures are fabricated by g-C3N4 with other narrow band photocatalysts due to its low conduction band (CB). In this paper, SiC, another kind of photoelectric semiconductor with low CB, was employed to prepare direct Z-scheme photocatalyst with 2D WO3 by simple water oxidation precipitation method. The component and interface band structure of Z-scheme heterojunction WO3/SiC (WS) were verified by XPS, KPFM, Mott-Schottky method. The photodegradation efficiency and rate constant values of WS-1 for degrading RhB enhanced 2.5 and 5.3 times respectively compared with pristine WO3. Radical capture experiments and ESR tests affirmed that WS-1 photocatalyst produced •OH and •O2-active species, which further confirmed the photogenerated carriers were transmitted through the Z-scheme mode in principle. Band structure investigation showed that the direct Z-scheme structure assembled by WO3 with high valence band (VB) and SiC with low CB could maintain the high photocatalytic activity of active species. Therefore, this study offers a feasible method for construction of a novel and efficient direct Z-scheme photocatalyst.


Asunto(s)
Electrones , Luz , Catálisis , Oxidación-Reducción , Fotólisis
18.
ACS Appl Mater Interfaces ; 13(14): 16289-16299, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33784815

RESUMEN

Mechanically strong separators with good electrolyte wettability and low-shrinkage properties are desirable for highly efficient and safe lithium batteries. In this study, multifunctional nanofiber membranes are fabricated by electrospinning a homogeneous solution containing amphiphilic poly(ethylene glycol)diacrylate-grafted siloxane and polyacrylonitrile. After the chemical cross-linking of siloxane, the prepared nanofiber membranes are found to exhibit good mechanical properties, high thermostability, and superior electrolyte-philicity with aqueous and nonaqueous electrolytes. Li-metal cells with the fabricated membrane separator exhibit high cycling stability (Coulombic efficiency of 99.8% after 1000 cycles). Moreover, improved cycling stability of Li-sulfur batteries can be achieved using these membrane separators. These membrane separators can be further used in flexible aqueous lithium-ion batteries and exhibit steady electrochemistry performance. This work opens up a potential route for designing multifunctional universal separators for rechargeable batteries.

19.
Nanoscale ; 12(40): 20965-20972, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33090171

RESUMEN

Here, a strategy for the preparation of adjustable imidazolium-type ionic liquid (IL)-based carbon quantum dots (CQDs) was reported. The effect of chemical structure, including carbon chain length of the N-substitution and the type of anion, on the amphiphilicity of CQDs was systematically investigated. It was found that the hydrophobicity of CQDs can be increased with the increase of carbon chain length for substitution at the N3 position. Moreover, the amphiphilicity of CQDs was also switched by changing the hydrophilic anions to hydrophobic anions. Due to adjustable amphiphilicity, the hydrophilic and hydrophobic CQDs were used for the preparation of fluorescent hydrogels and organogels, respectively. The fluorescent CQD-doped gels showed light- and force-dual stimuli responsiveness, which provides more secure information encryption than traditional single encryption inks.

20.
Acta Biomater ; 115: 136-147, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853804

RESUMEN

As an inflammatory skin disease of pilosebaceous follicles, Propionibacterium acnes (P. acnes) can aggravate local inflammatory responses and forms acne lesions. However, due to the skin barrier, various transdermal measures other than antibiotic creams are necessary. Microneedle (MN) patches are emerging platforms for the transdermal delivery of various therapeutics since it can effectively create transport pathways in the epidermis. Herein, we develop an active pharmaceutical ingredient poly(ionic liquid) (API PIL)-based MN patches containing salicylic acid (SA). The PIL-based MNs are simply prepared through photo-crosslinking of an imidazolium-type ionic liquid (IL) monomer in MN micro-molds, and following by anion exchange with salicylic acid anions (SA-). The fabricated SA-loaded PIL-MNs exhibited therapeutic efficiency in the topical treatment of P. acnes infection in vitro and in vivo. These active pharmaceutical ingredient PIL-based MNs can improve acne treatment, demonstrating potential applications for skin diseases. STATEMENT OF SIGNIFICANCE: Microneedle (MN) patches can be used as platforms for transdermal delivery of various therapeutics to treat bacterial infection. Here, a facile strategy was developed to synthesize active pharmaceutical ingredient poly(ionic liquid)-based microneedle patches by anion-exchange with salicylic acid anion (SA-). The fabricated SA-loaded PIL-MNs are active on not only anti-bacteria but also anti-inflammation in P. acnes treated mice, and may have potential applications for skin acne infection.


Asunto(s)
Acné Vulgar , Líquidos Iónicos , Preparaciones Farmacéuticas , Acné Vulgar/tratamiento farmacológico , Administración Cutánea , Animales , Ratones , Agujas , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...